1 9 M ay 2 00 6 THE OUTER SPACE OF A FREE PRODUCT

نویسنده

  • Gilbert Levitt
چکیده

We associate a contractible “outer space” to any free product of groups G = G1 ∗ · · · ∗ Gq. It equals Culler-Vogtmann space when G is free, McCulloughMiller space when no Gi is Z. Our proof of contractibility (given when G is not free) is based on Skora’s idea of deforming morphisms between trees. Using the action of Out(G) on this space, we show that Out(G) has finite virtual cohomological dimension, or is VFL (it has a finite index subgroup with a finite classifying space), if the groups Gi and Out(Gi) have similar properties. We deduce that Out(G) is VFL if G is a torsion-free hyperbolic group, or a limit group (finitely generated fully residually free group).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 9 A ug 2 00 6 THE OUTER SPACE OF A FREE PRODUCT

We associate a contractible “outer space” to any free product of groups G = G1 ∗ · · · ∗ Gq. It equals Culler-Vogtmann space when G is free, McCulloughMiller space when no Gi is Z. Our proof of contractibility (given when G is not free) is based on Skora’s idea of deforming morphisms between trees. Using the action of Out(G) on this space, we show that Out(G) has finite virtual cohomological di...

متن کامل

1 9 M ay 2 00 6 DEFORMATION SPACES OF TREES

Let G be a finitely generated group. Two simplicial G-trees are said to be in the same deformation space if they have the same elliptic subgroups (if H fixes a point in one tree, it also does in the other). Examples include Culler-Vogtmann’s outer space, and spaces of JSJ decompositions. We discuss what features are common to trees in a given deformation space, how to pass from one tree to all ...

متن کامل

ua nt - p h / 06 05 21 9 v 1 2 5 M ay 2 00 6 Classical simulators of quantum computers and no - go theorems

It is discussed, why classical simulators of quantum computers escape from some no-go claims like Kochen-Specker, Bell, or recent Conway-Kochen " Free Will " theorems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006